A Method for Energy and Resource Assessment of Waves in Finite Water Depths
نویسندگان
چکیده
This paper presents a new method for improving the assessment of energy and resources of waves in the cases of finite water depths in which the historical and some ongoing sea wave measurements are simply given in forms of scatter diagrams or the forms of (significant) wave heights and the relevant statistical wave periods, whilst the detailed spectrum information has been discarded, thus no longer available for the purpose of analysis. As a result of such simplified wave data, the assessment for embracing the effects of water depths on wave energy and resources becomes either difficult or inaccurate. In many practical cases, the effects of water depths are simply ignored because the formulas for deep-water waves are frequently employed. This simplification may cause large energy under-estimations for the sea waves in finite water depths. To improve the wave energy assessment for such much-simplified wave data, an approximate method is proposed for approximating the effect of water depth in this research, for which the wave energy period or the calculated peak period can be taken as the reference period for implementing the approximation. The examples for both theoretical and measured spectra show that the proposed method can significantly reduce the errors on wave energy assessment due to the approximations and inclusions of the effects of finite water depths.
منابع مشابه
An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths
For cost savings and ease of operation, nearshore regions have been considered as ideal regions for deploying wave energy converters (WECs) and wave farms. As the water depths of these regions may be frequently limited to 50 m or less, they can be considered as being transitional/intermediate to shallow when compared to the wave lengths of interest for wave energy conversion. Since the impact o...
متن کاملاستفاده از روش جداسازی متغیرها برای مطالعه موج شکن شناور
In this article, a rectangular cross section breakwater in water of finite depth and infinite domain is studied using the separation of the variables method in regular, sinusoidal waves. Determining the radiation potentials in three degrees of freedom e.g. sway, heave and roll, added mass and damping coefficients of sway, heave and roll motions is obtained. Diffraction problem is solved accordi...
متن کاملبررسی پاسخ سکوهای فراسـاحلی ثابت فلزی مجهز به آلـیاژ حافظه دار شکلی درعمق های مختلف تحت نیروی امواج
In this research, the response of fixed offshore platforms equipped with shape memory alloy elements at the different depths under extreme wave loading are taken into account. For this purpose platforms located in different water depths 70, 110 and 150 has been considered. At first for evaluation of the nonlinear behavior of three platforms, pushover analysis using SACS has been engaged. Then n...
متن کاملAssessment of Subsurface Explosion caused by Tunnel Construction in Urban Areas
Nowadays, tunneling in urban areas is a common activity for a variety of transportations such as subways, water supply, lifelines andsewers that may require blast operations. The characteristics of stress waves of the blast are quite different from earthquake waves. The blast waves are usually of high frequency content, short duration, equality of amplitudes in horizontal and vertical direction...
متن کاملSolution of propagation of acoustic-gravity waves in the atmosphere using finite difference method of order two
Investigating waves propagation’s equation in the atmosphere is one of the important and widely used issues in various sciences, which has attracted many researchers. A type of propagating waves is an acoustic-gravity wave. These type of waves have a lot of stationarity properties and can be propagate to a high altitude in the atmosphere. The equation of acoustic-gravity wave propagation is a h...
متن کامل